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ASYMPTOTIC OF A SLIGHTLY VISCOUS FLUID FLOW UNDER THE EFFECT 

OF TANGENTIAL STRESSES ON A FREE BOUNDARY 

V. A. Batishchev UDC 532.526 

Formal asymptotic expansions of the solution of a plane nonlinear stationary problem 
with a free boundary are constructed for high Reynolds numbers under the assumption that 
the surface tangential stresses are given and have a finite value. The boundary layer equa- 
tions near the free boundary are nonlinear, while the principal terms of the asymptotic out- 
side the boundary layer satisfy the Euler ideal-fluid equations. It is shown that the ac- 
tion of the tangential stresses results in the appearance of an additional term equivalent 
to the surface tension forces in the dynamic boundary condition on the free boundary of a 
"limit" inviscid flow. 

i. A plane nonlinear stationary problem on the motion of an incompressible fluid is 
considered for the Navier-Stokes equations with vanishing viscosity (v § 0) in a domain D 
bounded by the free surface F subjected to tangential and normal stresses given on F: 

(v, V)v = --9-1Vp + vAv + g, div v = 0; (1 .1)  

p--2pvOvn/On=p.+• pvn(~.V) v = T ,  ( x , z ) ~ F ;  (1 .2)  

v . n  = 0,  @, z) ~ r. ( 1 . 3 )  

Here v = (Vx, Vz), g = -gez, e z = (0, i) is the direction of the z axis, p is the fluid den- 
sity, g is the acceleration of gravity, o = const > 0 is the coefficient of surface tension, 

is the curvature of the free boundary F (K > 0 if F is convex outside the fluid); n and 
are unit vectors of the external normal and the tangent to F; p, is the given pressure on 
F; and T is the tangential stress on F [T = O(i) as v + 0]. It is assumed that the domain 
D is not bounded and the behavior of the velocity field at infinity is given. 
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For vanishing viscosity (v + 0) near the free boundary a boundary layer of infinitely 
large vorticity of the order of 0(i/v) is formed. In the external domain (outside the boun- 
dary layer) the flow is described approximately by the Euler equations. In the case of no 
tangential stresses (T = 0) on the free boundary asymptotic expansions of the solution of 
the problem are constructed in [i], where it is shown that the boundary layer equations are 
linear and solved in quadratures. For T = 0(i) near F a boundary layer can occur that satis- 
fies the nonlinear equations. Equations of the Marangoni boundary layer that occurs near 
the free boundary of a nonuniformly heated fluid because of the thermocapillary effect are 
formulated in [2] and studied in [3-5]. 

The asymptotic is studied below for a low-viscosity fluid flow that satisfies the system 
(1.1)-(1.3). The problem (1.1)-(1.3) is reduced to dimensionless form and a small parameter 

= vpl/2L,-~T,-~/= is introduced (L,, T,~/ap -~/2, T, are the length, velocity, and tangential 
velocity scales). The asymptotic expansions of the solution of the problem as E + 0 are 
constructed in the form 

N 

~.-L--h v,-" 8x/3 o+  Z eh/3(vh+hh+l)' ( 1 . 4 )  
h=0  

N N 

h=O h=O 

where z = ~(x)  i s  t he  e q u a t i o n  of  t he  f r e e  boundary .  Let  D r deno te  t he  boundary l a y e r  do- 
main. Then h k, qk a r e  f u n c t i o n s  of  the  t y p e  of  t he  boundary l a y e r  problem in D F. The vec-  
t o r - f u n c t i o n s  v k and the functions Pk determine the asymptotic solution of the problem every- 
where outside D F. Let us note that the order of the principal term in the expansion of the 
velocity vector in (1.4) and the order of the boundary layer thickness are found from the 
condition that the orders of the viscous and inertial terms in the Navier-Stokes system 
(i.i) as well as in the boundary conditions (1.2) for the tangential stress av/an = O(1)E 
as e + 0 are equal. The boundary layer thickness is of the order of E=/3 in this case. 

Let us formulate the problem for the principal terms h 0 and q0 of the asymptotic (1.4) 
that govern the flow in the boundary layer domain. Near F we introduce the local orthogonal 
coordinates (r, q ) by means of the formulas 

x = X ( c p )  - -  r n , = ,  z = Z(qO-- r n z .  

Here r is the distance between the point (x, z) and the contour r; nx, n z are components of 
the unit vector normal to F drawn within the domain D; and x = X(~), z = Z(~) are the para- 
metric equations of the contour F. For sufficiently small r segments of the normal of length 
r are not intersected. 

The boundary value problem for h 0 is derived by applying the second iteration process 
[6] to the system (1.1)-(1.3). Let h~k, hrk, and V~k, Vrk be components of the vectors h k 
and v k, respectively, in the coordinates (r,~). We substitute the expansions (1.4) into 
(I.i), (1.3) and into the dynamical condition (1.2) for the tangential stress on F. Let 
us expand v k and Pk in a Taylor series in powers of r and let us set r = g2/3s. We intro- 
duce the notation Hr= = hr= + Vrllr= 0. Equating the coefficients of e-, l e-2/3 to zero we 
find hr0 = hrl = 0, while we deduce the boundary value problem for he0, Hr2 

+h~o Ohio Oh o O~h~o Ohio OHr~ ( 1.5 ) 
--~ + H~2 o~ = ' o7  ' o~  + 8 ~ = 0' 

Ohio I : - - T ( ~ ) ,  Hr~ls=0=O, hr O, 
OS IS=O 

where 6 is the Lame coefficient of the curve r(6 2 = (ax/a~) = + (az/a~)=). The problem (1.5) 
on the segment ~ [0, l] is studied in [7] for a given initial profile h~0 = f(s) (~ = 0), 
where the solvability conditions are found T(~)~ ci[0, s f(s)~ c2+=[0, ~], = > 0, T(0) = 
--f'(O), f(s) + 0 (s + ~), f(s) > O, T(~) ~ O. 

The higher approximations of hk (k e i) are found by solving the linear boundary value 
problems 

+hr Oh~k I Ohio Ohio Ohr i Oh~u OHr,h+ ~ 
- .~+.-E-.~-h~h +Hr.k+~--~7+Hr2- ~ -- Os ~ + F~, 5 O~ + os =Nk,  
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~h@h s=o Di = M~,  H~,h+2 I~=o = Os. h ~ l ~ = ~  = 0 

(Hr,k+ 2 = hr,k+ 2 + Vr,k+i). The coefficients F k, N k, M , G k are known and not written down 
because of their awkwardness, where Fi = Ni = ~i = Gi=k0 for v0 = 0. 

Now, applying the second iteration process to the Navier-Stokes system (i.i) projected 
on the normal to the free boundary, we derive an equation for the correction to the pres- 
sure q0 in DF, from which there follows 

qo = - -  • j h~ods" ( 1 . 6 )  

Let us find the value of q0 on the free boundary. Integrating the boundary layer equa- 
tion in (1.5) with respect to s on the semiaxis (0, ~), we apply integration by parts by 
taking account of the condition on F and by integrating the equation obtained with respect 
to ~ we derive the relationship 

S h~ods = fro (s) ds -4- ~ T 6 d g .  ( 1 . 7  ) 
0 0 I~ o 

Here f0(s) = hr T o) is the velocity profile in the boundary layer in the section ~ = %. 
Setting s = 0 in (1.6) and taking account of (1.7) we have 

qo = - -  • T6dtp + 1~ (s) ds (s =- 0).  
\~0 0 . 

(i.s) 

If the velocity profile in the boundary layer is known for a certain 90, then the value of 
the boundary layer correction to the pressure on the free boundary is determined without 
solving the problem for the boundary layer (1.5). 

Let us present the self-similar solution of the problem (1.5) for the case when the 
tangential surface stress is given by the power law T = ~0~ n. The self-similar solutions 
of the more general equations of the stationary Marangoni boundary layer are constructed 
in [3]. Let ~ be the arclength of the contour F, then 6 = I. Let us introduce the stream 
function ~ by means of the formulas h~ = a~/Ss, H~ 2 = -8#/a~ and let us use the notation 
G = sT(n-i)/3. Representing ~ in the form ~ = T (n~2)/ag(l]) we derive a boundary value prob- 
lem for the function g(N) from (1.5) (it is not necessary to give the initial profile since 
it is determined by the self-similarity condition) 

,. n ~ 9 2 n @ l  g' + ~ g g "  a g" =o, g(o)=o, g"(o)=-~o, g'(~)=o.  (1.9) 

The relationship (1.7) results in the condition x0(n + i) > 0. The function g(n) is con- 
structed numerically for different n. Thus for n = 0 and x0 = i the function g(q) grows 
monotonically from zero to g(oo) = 1,481 on the semiaxis (0, ~). For n = i an exact solu- 

3 / - -  i 3 , - -  
tion g= u "co[l--exp(-- I/T0~]I ].., exists, where ~0 is positive. For n = -2 the equation (1.9) 

3f ~V- 
6 |" - -T  o 6 --~o 

has a power-law solution g = Here "[o is negative. 

We now present the boundary value problems for v k, Pk that govern the flow outside the 
boundary layer domain. The equations for Vk, Pk are obtained by applying the first itera- 
tion process [6] to the Navier-Stokes system. Let us transfer all the terms of the system 
(i.I) to the left side, which we will denote by P(V), where V = (Vx, vx, p). Furthermore, 
we require satisfaction of the relationships 

, } -  x ) 
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Equating the sum of the coefficients of ~k/3 successively to zero in (i.i0), we obtain a 

system of equations to determine Vk, Pk 

~,  ( v i , ~ ) v j : - - V p k - l - ,  Ave-3, ( 1 . 1 1 )  
i+j=k 

d i v v  h-== 0 (k = O, 1, . � 9  N;  u_ 1 =  r'- 2 =: v'-3 = 0). 

We derive the boundary conditions for the systems (i.ii) by applying the first and second 
iteration processes simultaneously to (1.2) and (1.3). We let F 0 denote the free boundary 
of an inviscid flow w0, P0- Near r 0 we introduce the local orthogonal coordinates (rl,~1) 
(r; is the distance to F0). We represent the curvature of the curve F in the form < = K 0 + 
eI/3< l + ... (K 0 is the curvature of the contour F0). We substitute the expansion (1.4) 
into (1.3) and in the dynamic condition for the normal stress in (1.2) and we go over to 
the coordinates (rl, ~ i)- Equating coefficients of gk/3 to zero, we deduce boundary condi- 
tions for the systems (i.ii), which we write in the dimensionless form 

vh'n0 = - - H ~ . ~ + I  + E h ,  p ~ + q h + ~ a O ~ . ~  1 Bo - R  , (x, z) ~ F o "  ( 1 . 1 2 )  

where n o is the unit vector of the external normal to r0; Bo = pgL,2/a is the Bond number, 
and E 0 = R 0 = 0. The coefficients Ek, R k (k ~ i) are not written down because of their awk- 
wardness. In the coordinates rl, ~ i the coefficient ~0 = 0, since r I = 0 is the equation 

of r o . 

The principal terms v0, P0 of the asymptotic expansions (1.4) that govern the flow of 
an ideal fluid with free boundary r 0 are found from (i.ii) and (1.12) for k = 0 with (1.8) 
taken into account, and they satisfy the boundary value problem 

(Vo, V)Vo = - -Vpo  - -  ez, d iv  v o = O, ( 1 . 1 3 )  

v 0.n 0 = 0 ,  P 0 = P * + N  + • 1 7 6  T~dq~+ /~(s) ds , ( x , z ) ~ F  0. 
~o o 

T h e r e f o r e ,  t h e  a c t i o n  o f  t h e  t a n g e n t i a l  s t r e s s e s  on t h e  f r e e  b o u n d a r y  o f  a low v i s c o s i t y  
f l u i d  r e s u l t  i n  t h e  a p p e a r a n c e  o f  an  a d d i t i o n a l  t e r m  c o r r e s p o n d i n g  t o  t h e  i d e a l  f l u i d  f l o w  
( 1 . 1 3 )  i n  t h e  d y n a m i c  b o u n d a r y  c o n d i t i o n  on t h e  f r e e  b o u n d a r y ,  a n d  w h i c h  c a n  b e  i n t e r p r e t e d  
a s  t h e  a c t i o n  o f  c a p i l l a r y  f o r c e s  w i t h  a v a r i a b l e  c o e f f i c i e n t  o f  s u r f a c e  t e n s i o n .  

2 .  We e x a m i n e  t h e  c a s e  o f  no v e l o c i t y  f i e l d  i n  an  i n v i s c i d  f l u i d .  L e t  u s  d e t e r m i n e  
the shape of the free surface of a low viscosity fluid when the ideal fluid is at rest 
(w 0 = 0 and p, = 0). Here h I = 0. It follows from (1.13) that the free boundary F 0 written 

in dimensional variables will satisfy the equation 

x o a + ? +  f6dep = p g z + e ,  c = c o n s t ,  ( 2 . 1 )  
eP 0 

v = (s) d s  : oon t, 
o 

which has a solution in quadratures in the absence of gravity forces (g = 0). Let �9 be the 
arclength of the contour r0; then 6 = i. Let us write (2.1) in parametric form. We repre- 
sent the equation of r 0 in the form x = x(~), z = z(~). We let $(~) denote the slope of 
an element of the line F0, obtained as ~ increases to the Ox axis. Then x' = cos 8, z' = 
sin 8. The equation of the boundary F 0 takes the form 

(!) a + ~ + Tdcp x" = ~ cz', a + ? + Tdtp z" = 4- cx" 

~o 

where the upper or lower sign is selected in conformity with whether the fluid is located 
above or below the surface F 0 relative to the Oz axis. It is easy to show that 8(~) satis- 

fies the equation 
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o -~- 7 + .1 Td~ 
q: 0 

Now having determined ~(~) we find the equation of F 0 

l Y x = c ~ - t -  cosl~dqo, z = c ~ +  sin[~dq~, 
o o 

= C~ -4-- C y d(p(~ 

o a+~,+S rd~ 

( 2 . 2 )  

Here ci, c 2 determine the Cartesian coordinates of the reference point B of the arclength ~, 

while the constant c 3 is the slope of the tangent to F 0 at the point B. The constant c is 

found from additional conditions in each specific case. 

Example I. Let the fluid fill a semiinfinite strip -~ g z g ~(x), 0 g x ~ L bounded 
by the solid walls x = 0, x = L and the free surface F. A constant tangential stress T = 
const > 0 acts on F. We start to measure the parameter ~ from the wall x = 0 where the pos- 
itive direction of the coordinate ~ is selected to agree with the direction of the tangen- 

tial stress. The boundary layer equations (1.5) have the solution he0 = ~ i/3g'(n), where 
= s~-l/3(g(q)) is determined numerically from the boundary value problem (1.9) for n = 

0. In this case ~ 0 = 0, f0(s) = 0, and the constant is 7 = 0. Equation (2.2) is reduced 

to the form 

~ + T ( P ( T c o s ~ + c s i n ~ ) ,  z ~ c  2 + T  §  ( 2 . 3 )  x = c~ + T~ + 2 ~ (T sin ~ - -  c cos ~), 

in (1 + T(p/(~). 

We express the constants ci, c2, c in terms of values of the angles formed by the boun- 
dary F 0 with the solid walls at the contact points as well as in terms of the Cartesian co- 
ordinates for the reference point of the variable ~. Let x = 0, z = 0, $ = ~0 for ~ = 0 
and ~ = ~l for x = L. We reduce the system of equations for c, cl, c2, c~ to a nonlinear 
algebraic equation for the arclength ~: of the contour F0 

The constants are now determined by the formulas 

r ( ~  - ~o) ~ + r~ C=1.(t+T~1/o ), c l=L  ? ~ ?  ( r  cos~l  + c sin ~1), 

(c cos ~o - -  T sin ~o), c3 = 60- c~ = T2 ~ c~ 

For instance for ~0 = 0 and ~z = ~/2 we present the numerical values c = -1.507T, c I = 
-0.306o/T, c 2 = -~.46o/T, c 3 = 0. 

Let us note that the boundary layer functions that appear in the neighborhood of the 
solid boundaries S and the contact points of S and F are not in (2.3). The asymptotic expan- 
sions are of more complex nature in the neighborhood of the contact points. The boundary 

layer functions in these domains yield a contribution to the equation of the free boundary 
only in higher approximations, starting with the second and, consequently, are not presented 
h e r e .  

Example  2 .  L e t  u s  c o n s i d e r  t h e  c a s e  when t h e  f l u i d  a b u t s  on  a s o l i d  v e r t i c a l  w a l l  x = 
0 o n l y  on t h e  o n e  s i d e  f o r  x > 0 .  L e t  a c o n s t a n t  t a n g e n t i a l  s t r e s s  T = c o n s t  > 0 d i r e c t e d  
f r o m  t h e  w a l l  a c t  on t h e  f r e e  b o u n d a r y  F. We s e l e c t  t h e  m e a s u r e m e n t  o f  t h e  p a r a m e t e r  ~ f r o m  
t h e  w a l l  t o w a r d  i n c r e a s i n g  x .  E x a c t l y  a s  i n  t h e  p r e c e d i n g  e x a m p l e ,  ~ 0 = f 0 ( s )  = ~ = 0 .  We 
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introduce the Oz axis so that ~(q) = 0 for ~ = ~, then c = 0 in (2.1). We assume that 
l~'(q~) I is small; then the linearized equation (2.1) has the following solution for g ~ O: 

[Kl(t) is the modified Bessel function]. The constant Co is determined easily by the value 
of the wetting angle at the point of fluid contact with the wall. 

i, 

2. 

3. 

. 

5. 

. 

7. 
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NONLINEAR CRITICAL LAYER AND FORMATION OF LINEAR VORTICES 

WITH REACTION OF WAVES IN SHEAR FLOWS 

V. P. Reutov UDC 532.526 

Recently in hydromechanics there has been a considerable increase in interest in the 
problem of transition from laminar to turbulent flow [i-3]. Of considerable importance for 
explaining processes occurring during transition to turbulence in shear flows is analysis 
of the nonlinear structures occurring as a result of the development of hydrodynamic insta- 
bility. Experiments show that in boundary flows such as a boundary layer and Poiseuille 
flow, occurrence of turbulence is connected with formas of A-vortices characterized by 
a considerable linear (in relation to flow direction) component of vorticity [4-9]. In [i0] 
attention was drawn to the related connection of these vortices with large-scale bounded 
structures observed in the region near the wall of developed turbulent flow. 

The theory of Benney and Lin [ii, 12] connects oscillation of linear vorticity in trans- 
itional flow with an increase in it of pairs of inclined (three-dimensional) waves having 
the same phase velocity and linear components of wave vectors. The instantaneous profile 
of the transverse velocity determined in [12] within the framework of linear approximation 
demonstrates two reversals of velocity for the period of the wave, whereas in experiments 
[5, i0] sequences of profiles are observed with one reversal which corresponds to passage 
through a stationary observation point for one vortex formation in the period of the wave. 
In this work a study is made of essentially nonlinear vortex structures occurring in a criti- 
cal layer (CL) of laminar flow with resonance reaction of two-dimensional and inclined waves 
increasing in it. Analysis is built up within the framework of an asymptotic approach rest- 
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